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Detection of anomalous diffusion using confidence intervals of the scaling exponent
with application to preterm neonatal heart rate variability
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The scaling exponent of the root mean squamas) displacement quantifies the roughness of fractal or
multifractal time series; it is equivalent to other second-order measures of scaling, such as the power-law
exponents of the spectral density and autocorrelation function. For self-similar time series, the rms scaling
exponent equals the Hurst parameter, which is related to the fractal dimension. A scaling exponent of 0.5
implies that the process is normal diffusion, which is equivalent to an uncorrelated random walk; otherwise, the
process can be modeled as anomalous diffusion. Higher exponents indicate that the increments of the signal
have positive correlations, while exponents below 0.5 imply that they have negative correlations. Scaling
exponent estimates of successive segments of the increments of a signal are used to test the null hypothesis that
the signal is normal diffusion, with the alternate hypothesis that the diffusion is anomalous. Dispersional
analysis, a simple technique which does not require long signals, is used to estimate the scaling exponent from
the slope of the linear regression of the logarithm of the standard deviation of binned data points on the
logarithm of the number of points per bin. Computing the standard error of the scaling exponent using
successive segments of the signal is superior to previous methods of obtaining the standard error, such as that
based on the sum of squared errors used in the regression; the regression error is more of a measure of the
deviation from power-law scaling than of the uncertainty of the scaling exponent estimate. Applying this test
to preterm neonate heart rate data, it is found that time intervals between heart beats can be modeled as
anomalous diffusion with negatively correlated increments. This corresponds to power spectra betdveen 1/
and 1f, whereas healthy adults are usually reported to halvegdéctra, suggesting that the immaturity of the
neonatal nervous system affects the scaling properties of the heaftSa#63-651X98)14911-5

PACS numbdss): 87.10+€, 05.40+j

[. INTRODUCTION heights[20]. The Hurst exponent completely characterizes
the scaling properties of self-affine time series, and is related
Power-law scaling has been used to describe signals @b the fractal dimension bp=E—-H+1, whereE is the
physical systems as diverse as turbuleftg)], the stock Euclidean dimension of the signdR1]. Although the
market[3,4], geophysical phenomen&], heart rate variabil- second-order exponeht is only one of the infinite number
ity [6—10], DNA sequence compositidii1-13, and, more of structure function exponents of a multifractal procgsls
recently, DNA evolution[although they are related, DNA H is important as a descriptive parameter in that it measures
seqguence composition must be distinguished from DNA evothe scaling in second-order functions such as the spectral
lution since the former deals with spatial autocorrelationsdensity and autocorrelation. A generalization of the Wiener-
(see Ref[14]), whereas the latter deals with temporal auto-Khintchine theorem for nonstationary proces$gs yields
correlations. A critical point process with scaling in time the power spectral density
may result from the self-organization of interacting genes
[15]] [16—19. A defining characteristic of fractal or multi-
fractal time series is the growth of the second-order structure
function, also called the variogra], as a power law in the
time between increments: for the range of frequenciet corresponding to the time
scales for which Eq(l) holds. Increments can be treated as
([x(t) —x(t)) 1%y o |t; — ;]2 (1)  the first derivative of a smoothed signal, leading to a spectral
density of increments proportional tof%'~%)~*, which,
wherei andj are integers that index times, ahdis a posi- again using the Wiener-Khintchine theord2®], provides
tive real parameter. The increments are assumed to havetlae autocorrelatiomb(7) in the increments of a signal,
mean of zero:

S(f )Nf_m (3

1
<X(ti)_x(t]’)>:0. 2) (D(T)~|7_|2(TH), (4)

For self-affine(monofractal time seriesH is the Hurst ex- valid for lag timesr corresponding to the frequencies of Eq.
ponent, named after Edwin Hurst for his study of river (3). The last step assumes the stationarity of the increment
process, requiring thatOH<1; Mandelbrot and van Ness
noted this restriction on the Hurst exponent of fractal Brown-
*Electronic address: BickelDR@aol.com ian motion, a self-affine process with stationary increments
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called fractal Brownian noisg23]. The autocorrelatiofd) is S’ is partitioned intoN disjoint sets ofn increments per set;

positive for H>0.5, negative forH<0.5, and zero foH N is the greatest integer less than or equalLfon. The

=0.5, the case of normal diffusidiBrownian motion or an  elements of each bin are averaged to yield a time s&fjesf

uncorrelated random walk. A process with#0.5 can be valuesy

modeled as anomalous diffusion or as a correlated continu-

ous time random walk; see Ref24-26 for relationships Sh=Ym1,Ym2:---Ymn)s )

between the two formalisms. Alternately, discrete-event

counts that scale as E) can be described as fractal-rate where

stochastic point processga7]. im
Several techniques for estimatihtyhave been proposed, —

including rescaled-rangdR(S) analysig20], autocorrelation Ymj=

analysis[ 28,29, dispersional analysis0], spectral analysis

[31], wavelet analysi$32,5], wavelet packet analysig3], for j=1,2,...N. (8

detrended fluctuation analysj§,10], maximum likelihood . ) .

analysis[34], and, for point processes, Allan-Fano factor ASSUming that the signal follows E¢2), the increment ex-

analysis[Fano factor analysiE35,9,36, a method related to Pected mean is zerd£)=0), and thus the sample standard

Allan-Fano factor analysis, does not directly estimate deviation ofS’ at resolutionm can be defined as

since it applies to stationary event counts with power spectra N 12

between 1f* and 1f°, rather than to nonstationary event S E(i S 2 ) 9

counts with power spectra given by E@®)] [37,38,9,2T. mANSE ™

Using synthetically generated fractal Brownian motion sig-

nals, dispersional and spectral analyses usually yield lowefhis differs from the sample standard deviation definition

bias and higher precisiofstatistical efficiencyin the esti- ~ Which is typically used in dispersional analygiél], and

mates oiH than rescaled-range and correlation analy86 ~ Which would be more appropriate if the expected mean were

When comparing the dispersional method to the spectratnknown:

method, the former yields better results when the fractal sig- N N 211/

nal is generated using a covariance mafdg], while the - | D 1 3

latter performs better when the signal is generated using om(Unknowr(£))=| g—7 = Ymi™ N = Ym,j '

spectral synthesig39] (Appendix A). Maximum likelihood (10)

estimation has lower bias and higher precision than other

methodd 39,40, but the time complexity of the optimization Combining Eqs(8) and(9) yields

involved makes it less practice89]. Although the proposed N 12

test is compatible with all of these estimation techniques, we ~ 1)1 z A ~ 2

use dispersional analysis herein because it is simple and be- 7™ m | N & Xm0 =X -pme) I QD

cause the effects of short signal lengths and additive white

noise on the dispersional estimationtdthave been studied The sample standard deviatien, is an unbiased estimator

numerically[21]. of the expected standard deviation at resolutianwhich,

using Eq.(1), is

1 _)A((tjm+1)_§((t(j—1)m+l)
M= Dm+1 m

Il. DISPERSIONAL ANALYSIS

Dispersional analysis provides an estimate of the scaling Tm= {{[X(tjm+ 1) = X(t - 1yme 1) )2
exponent from the dependence of the standard deviation of

binned data on the bin sizes. In this method, a time series C oni1/2. C ho 01

S, .1 consisting ofL+1 measurementss(t;), sampled at —ﬁ(|tm_t0| ) —a(mAt) “miH (12)

timest;=iAt(i=1,2,...L+1), is differenced to obtain a

vector of increment§’ defined by where C is a constant of proportionality. Taking the loga-
rithm of Eq. (12) yields a straight line with slope-(1

S'=(&1,65,...,8L), (5) —H) and intercept logr:

where each increment is the difference between two succes- 109 om (1=Hlegm+log o, (13

sive measurements: Dispersional analysis uses sample standard deviatignt®
obtain estimates dfl ando;, respectivelyH ando, through

E=X(t,1)—X(t) with i=1,2,...L. (6) linear regression by minimizing the sum of squared errors:

g?= > [—(1—H)log m+log —10g ]2 fOr 1<mMpmn<Mpas .
M= Mpmin, 2Mmin,AMpmin - - Mmax/2Mmax 16

(14
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The range of bin sizem is determined by selecting mini- and the estimated standard error in that estimate is the
mum and maximum bin sizes),,;, andm,,,, for which Eq.  sample standard deviation divided by the square root of the
(12) holds; my,.x has an upper limit oL./16, since sample sample size:

standard deviations,, are unreliable estimates of population M 12

standard deviations,, for largerm[41]. Bin sizes for which So= 1 D (|:|‘ —h)? 17)
om=0 must be excluded from the analy$#l] because the HIM(M-1) & '

logarithm of zero is undefined. R ]
The standard erroo; can be used to compute confidence

intervals and test hypotheses using thdistribution if the

[ll. CONFIDENCE INTERVALS population ofH; values is normal, an assumption that holds
AND HYPOTHESIS TESTING for independent dispersional estimates of the scaling expo-
nent of fractal Brownian motiofi21]. Even without assum-
ing normality, o7, is a useful measure of uncertainty in that,
By Chebychev's inequality, the probability that the scaling
xponent falls outside the rand¢+ Koy, is less than or
equal to 1K? for any distribution. The drawback of this tech-
nique is that it requires multiple time series that are knawn
priori to have the same fractal scaling.

In using the estimated valud as a descriptive statistic,
confidence intervals can be obtained using its estimated sta
dard erroroyy . The standard error can also be used to test th
hypothesis that a time series is normal diffusion as oppose
to anomalous diffusion. After discussing two widely used
methods of computingr;, we introduce a third technique

that combines the advantages of the previous methods. We propose the partition method, a one-series variant of

Standard errors are typically calculated in one of two . . T~ .
ways. The first method equates the estimated standard errifle multiple-estimate method of computing, . The ML in

, . : crements of a single fractal time serigg, ., are partitioned
of H with that of the estimated slope (1—H) obtained iy M nonoverlapping subseries bfincrements each. Then,
from the minimized squared erref of the regression for i=1,2,... M, dispersional analysis is used to obtain
Hi, the estimate the scaling exponent of fltie increment
al ne subseries. The estimate Hffor the original time seried,
or(e)= (n—2)2[n=(log m)2— (= Jog m)?]) is found using Eq(16) and the standard errary is found
(15) using Eq.(17). This method combines the strengths of the
two techniques described above in that it provides a good
, o , estimate of the variability in the estimate of the scaling ex-
wheren is the number of bin sizem that are used in regres- ponent while requiring only one time series.

sion (14) and in the sums of E¢(15). This method appar- " Te standard error in the scaling exponent estimate can be
ently has the advantage that the standard error can be esflseq to test hypotheses about the scaling expoHeat a
mated from a single time series. Howevef,(e) is more of g0 time seriesS,,, . ,. The most important question in

a measure of the deviation of the (jgtqfrom_ B thgn IS this regard is whether a data set can be modeled as normal
an accurate measure of the variabilityHn This unreliability giffusion (H=0.5) or anomalous diffusionH# 0.5), since

is evident from previous uses of the technique. For exampléhe increments of the former are uncorrelated, whereas those
Bassingthwaighte and Raymof2l] used Eq(15) t0 com-  of the latter have positiveH>0.5) or negative i <0.5)

pute oj(e) for three synthetically generated data sets, ofautocorrelation$Eq. (4)]. One could test the null hypothesis
length 2 points each, withH=0.2, Ojr? and 0.8. In the yhat =05 using thez test with H and &y, but this is
second case, they obtainet=0.54 ando;=0.012, which ,ejiaple since for finite data lengthsbecauseH is a bi-
implies that the truéd value of 0.5 lies well outside the 95% ased estimator of [21], i.e A from Eq. (16) does not
confidence interval o, and that the null hypothesis that asymptotically approacﬁ asM—o. Thus. instead of com-
H=0.5 would thus be wrongly rejected, assuming that the aring A to 05. it is more meaningful to compaﬁb to
errors of the regression are independent and normally distribE|Br0Wn the dis. érsional analvsis estimaterbfor simulated
uted. The residuals, however, actually strongly violate inde’ , P y

pendence, as is seen by the typical systematic oscillations glgdinary Brownian motion I}(id':ffO.S')' Since ;[jhe inc(:jrementj
log &, around the line of regression, which partly explains®f Brownian motion(normal diffusion are independent an

why o(¢) performs so poorly as a measure of the variationrlorma"y distributed, the estimates of thv?n scaling exponent,
% , can be com-

in o HB™"", and that of its standard erro,°
Bassingthwaighte and Raymofi2ll] noted that the stan- Puted from the dispersional analysis Bf°™"" series ofL
dard deviation of many values provides a stronger esti- COmputer-generated Gaussian random numb?rBsro%zero mean
mate of the variability irH than does Eq(15) using a single ~ and unit standard deviation. Thed®"" and o, are,
value ofH. If H; is the estimate of the scaling exponent for fespectively, the sample mean and standard error in the mean
the ith of M time series assumed to have the same scalingf the M5 estimatesH """, with each estimate obtained
exponent, then the estimate df is the sample mean of the by the dispersional analysis of a stochastic series of leingth
I:ii values, The estimatedd and H®"" must be computed using the
same value oL since the bias in estimates &f depends
M strongly on the number of increments uged]. We usg(H)
% > |Z|i , (16) _and(HB“’W”> to denote expectation values of estimates, that
= is

2 1/2

H
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~ 1M crements a large number of times, and then computing
(H)= lim = Z Hi (18  Hshufledas the sample mean and™edas the standard error
M—ee T 121 of the mean of the scaling exponent estimates of the re-

shuffled data increments. Then the one-sided, one-sample
test could be applied usirg, HS"Vfed gndgshufiedig deter-
yBrown mine whether the time series being tested is normally diffu-
<|:|Brown>5 lim 1 2 £y Brown (19 sive (H=0.5), superdiffusive KI>0.5), or sub@ffuswe_lﬂ
o MBS T : <0.5). The two-samplé test could be used instead if the
ME time series is partitioned, so thet and o are the sample
The original time serieSy,, . , is ordinary Brownian motion Mean and standard error of the estimates from the subseries.
" TestingH using the reshuffling technique directly determines
whether there is significant autocorrelatiffgq. (4)] in the
data increments without requiring a comparison to simulated
Brownian motion. Nonetheless, the method of compating
to HB“’W”A is preferred when multiple time series are tested
becauseH """ only has to be computed once, whereas, in
the reordering methody*"™must be recomputed for each
time series. Using the same standard of compart$8i3""
for all data sets is computationally efficient and enables con-
sistent hypothesis testing from data set to data set.

and

if (H):(@B’OW”), positively correlated anomalous diffusion
if (H)>(H®"", or negatively correlated anomalous diffu-
sion if (H)<(H®™"". Thus the null hypothesik, is that
(H)=(H®°"" with the alternate hypothesish,:(H)

# (HB™ This test of the equality of population means is
performed using the two-tailed, poolétivo-samplg t test
[22] using the sample mears andH®"" and the standard
errorsa and 02", This test is used to determine whether,
for a seriesSy, , 1, the increment autocorrelatiod) mea-
sured byH is statistically significant, and, if so, whether it is
positive or negative. Section IV illustrates the use of the test

with heart rate data. Alternately, one could compHitedi- IV. APPLICATION TO HEART RATE VARIABILITY

rectly from the original data without partitioning, and use g estimation of the scaling exponent of the adult human
that estimate witH®°"" and ¢°"" in a two-tailed, one- heart rate has received considerable attention over the last
samplet test to teshy andh,, but then the uncertaintyo)  two decades. The most popular estimation method is spectral
in H would be unavailable. analysis, which indirectly estimaté4 since anomalous dif-
In theory, one could similarly test other hypotheses aboufusion has the spectru®(f ) given by Eq.(3). For healthy
the scaling exponent of a time seri8g, ,, for example, subjects, many researcheéesg., Refs[7,10,9) report spec-
whetherH =0, in which case Eq(3) implies that the power tra close taS(f )~ 1/f1, equivalent tdH~0, while otherg8]
spectrum goes like 1¥; this is sometimes called flicker reportS(f )~1/f2, equivalent toH~0.5 (normal diffusion.
noise. Then dispersional analysis would be applied to serieSubjects with congestive heart failure tend to have elevated
of 1/f1Aquctuations to obtain the scaling exponent’s samplescaling exponentg?,8,9); for example, Pengt al.[7] found
meanHke" and standard error of the meariik®". These that they are closer tBl=~0.5. Obtaining reliable confidence
values would be used in place BN and 6B in the  intervals ofH and statistically testing the hypothesis tiat
above procedure in order to determine whetHeis signifi- =Q.5 car_1.po_tent|ally resplv_e dlscrep.anw,es in the literature
cantly different fromH ke which would mean thaSy, . while facilitating the prediction of patients’ health. .
does not have a 1} spectrum. However, this test has limited V'\/e. used d|sp¢r5|ona! an_aly3|s with hypothesis testln_g to
- . L~ ker statistically quantify scaling in the neonatal heart rate. Since
reliability because the bias in the estimat®*®" has a strong

. the parasympathetic nervous system of neonates is not yet
dependence on the method used to simulate theftliCtua- completely developed, their nervous control of the heart beat

tions, since, in general, biases in estimating the scaling exgigtors dramatically from that of adults. Comparing the scal-
ponent vary widely when using different techniques of frac-,, oy onent of adults to that of neonates would reveal the

tal Brownian motion ge.ne_ratioh{lo]. The test works_ best extent to which this difference affects the scaling properties
when the null hypothesis is ordinary Brownian motion be—of the heart rate

cause simulations of normal diffusioil& 0.5) are superior The times between heartbed® R intervaly of 13 pre-

to those of anomalous d|ffu5|orH(¢0.5).. term neonates were measured for approximately 10 min
_ An alternate test of whether an estimate from a fractal,eekly for ten weeks, beginning when the neonates had a
time series |n_d|cates a S|gn|f|ca_nt deviationHrfrom 0.5 is _postconceptional age of 26 weeks and ending when they
based on estimates of the scaling exponent after reshufflinge e 35 weeks old. Thus, there would be 130 series of inter-
the increments. Using an estimation technique equivalent ¢+ intervals, but 11 of the series could not be recorded, due
dispersional analysis, Mantegi] found thatH, the esti-  gijther to a medical condition or a discharge before week 35,
mate ofH for a stock index time series, is 0.5D.02, while g9 a total of 119 series were analyzed. Appendix B describes
Hshufiled the estimate for the same data randomly blended inhe data collection. Each series of successive interevent times
time, is only 0.49-0.01. He concluded thai differed sig- is treated as a time series for the purposes of dispersional
nificantly from ﬁshuﬁleq and that there was therefore cou- analysis, even though the independent variable is the interval
p|ing between the price and time. However, his Conﬁdencélumber rather than the time of measurement. The interval
intervals were presumably computed with Etf), which, as  number is not converted to units of time, as this would cause
argued above, is a highly unreliable measure of uncertaintynformation to be lost in the interpolation of the intervals.
This test could be improved by randomly reordering the in- H, the estimate of the scaling expondt and oy, the
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FIG. 1. Tachogram: Interbeat interval vs interval number for a  FIG. 2. Dispersional analysis plots: Logarithm of standard de-
very healthy neonaté/H1 of Table ), measured at a postconcep- Viation vs logarithm of bin size, with regression lines. Dispersional
tional age of 35 weeks. As mentioned in the text, intervals beyondinalysis is performed on each 256-increment segment of the data
1537 were discarded and are not shown. The subject was not grlotted in Fig. 1 to estimate the scaling exponent of that data. Plots
ventilator or oxygen support at the time of measurement, and thuor two such segments are displayed h&ag Dispersional analysis
was breathing autonomously. Increments were obtained for dispeplot using the first 256 increments of the data displayed in Fig. 1.
sional analysis by subtracting each interval from its subsequent infhe close fit of the regression line to the data is quantified by the
terval. Figure 2 illustrates the dispersional analysis of the first andtandard error of the slope, which, based on &§), is only 0.031.
third subseries of 256 increments. This standard error satisfies conditi(#il), so the slope of-0.531

is added to 1 to obtain 0.469 as the estimate of the scaling exponent
standard error of the estimate, were computed for each intefor the segment of 256 increments. This estimate was averaged with
val series using the partition method described in Sec. |j1estimates from the other three increment segments that satisfied

First, the increments; for each series were obtained using condition(21) to obtain the estimate and standard error of the scal-
ing exponent for the series of Fig. 1. These values are in the upper-

=X 11— X, (20) right corner of Table |, and are plotted as the last point and error
bounds of Fig. 3(b) Dispersional analysis plot using increments

where X; is the ith time interval between two successive 513—768 of the data displayed in Fig. 1. The poor fit of the regres-
heartbeats. Then each increment series was partitioned inon line to the data is quantified by the standard error of the slope,
M subseries of 256 increments eadh=(256), discarding which, based on Eq15), is 0.102. This high standard error does
the increments at the end of each increment series, i.e., onl}Pt satisfy conditior(21), so the slope was not used to estimate the
the increments:; for which i<ML were analyzed. Disper- SCaling exponent.
sional analysis was performed on each increment subseries

with Egs. (7)—(14), to obtain scaling exponent estimatds  found the sample mearHE™""=0.488) and standard error

fori=1,2,... M, using bin sizesn from m;;,;=1 to M fth Brown_ ") Brown
= 1 . -
=16. Since dlspersmnal analysis assumes that the standaodt € mean 6 =0.001) of 5000 values , the es

deviations of binned data scale as EtR), each estlmate{, t?ﬁéirﬁféhae scaling e>(<jponent fc;)r tine st(ra]nes of 256 mdz— it
was regarded as reliable if its regression egrpwas small P ussian random numbers with zero mean and uni

enough to satisfy sFandard deviation Of thg 5000 estimates, onIyAtwo of them
violated Eq.(21), so their effect orHB™"" and aB"" are

oy, (g)<1/10, (22) r]egligible]A Using the values of Table I, a comparison of
' HBoWN to H for each series indicates that at the 0.1%:

WheregH (&;) is defined by Eq(15) with n=5. Of the 703  spectively 1% significance level, the null hypothesis

increment subseries available, 635 yielded reliable estimate®’ (H)=(H®"™ was rejected for sevefrespectively 21
of the scaling exponent. Redefining as the number of re- of 119 series, and <HB"" in all significant cases. At the
liable estimates for an increment seriesand oy, were ob- 5% level,hy was rejected for 42 series, 41 of which satisfied
tained for each of 119 original interval series using Ea8) H<HBo"" Therefore, the null hypothesis could be rejected
and (17) with the reliable estimateéi . One of the interval 5.9% of the time at the 0.1% level, 17.6% of the time at the
series is displayed in Fig. 1, and the estimation of the scaling% level, and 35.3% of the time at the 5% level. The facts
exponent of that series is illustrated in Fig. 2. Figure 3 showshat each percentage of null rejections is several times the
the estimated exponents and exponent standard errors for albrresponding significance level and thbt HBO"" in all or
series of one neonate, including the series of Fig. 1. Theearly all significant cases require that many of the interval
corresponding results for all neonates are displayed in Tablgeries be modeled as subdiffusidd<0.5) rather than nor-
I. Consistent with Refd.7—9], the mean scaling exponent of mal diffusion.
“very healthy” subjects is less than that of other subjects, For purposes of comparison, this test was also applied to
but this is not statistically significant. The scaling exponentl000 series, each consisting of 1536 independent Gaussian
estimates are not significantly correlated with age. random numbers of zero mean and unit standard deviation,
In determining whether an interval series is Brownian mo-usingL =256 andM = 6, the median number of subseries per
tion (an uncorrelated random Wajkﬁ and o, were used increment series for the heart interval data analyzed. The null
with their counterparts from simulated Brownian incrementshypothesish, of this synthetic data set could be rejected one
in a two-sample, one-sidddest, as outlined in Sec. lll. We time (only 0.1% of the timg at the 0.1% level, withH
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Normal Diffusion V. DISCUSSION AND CONCLUSIONS

Using the partition method of estimating the standard er-

0.7 . e ;

06 ror of the scaling exponent, we found that a statistically sig-
= ] T T TT1 I nificant number of preterm neonatal heartbeat series are sub-
g 05 | = diffusive (H<0.5). Neonatal beat-to-beat dynamics range
S04t I } I t between 1f* fluctuations H=0) and normal diffusion K
03 { =0.5) on a scale af,,,=1 beat tom,,.,=16 beats. lyengar
802F A et al. [10] found that the healthy young adult heartbeat has

01} an approximately T} power spectrum on a scale between

0 B four and 30 beats, which would imply that the scaling expo-
25 26 27 28 29 30 31 32 33 34 35 36 nent is generally higher for preterm neonates than for adults.

The preterm neonate intervals thus appear to be closer to an
uncorrelated random walk, whereas the adult interval incre-

FIG. 3. Scaling exponent estimates: Scaling exponent estimatdgents have stronger negative autocorrelatidtcs (4)]. We
of the interbeat intervals of a very healthy neondfeil of Table  hypothesize thathe difference in the heart rate scaling be-

1). Error bars were computed using twice the standard error of thé~een neonates and adults reflects the immaturity of the neo-
mean scaling exponent in order to roughly estimate 95% confidencatal autonomic nervous systein particular, the parasym-
intervals. Figure 2 illustrates how the mean and standard error dpathetic nervous systefaagus is not fully developed until a

the scaling exponent were estimated at the 35th week; other weeigar after birth. It is likely that, during the maturation of the
were treated similarly. The horizontal lines give the mean simulatedi€rvous system, the increasing regulation of the heart by the
scaling exponent values for 256-increment segments of normal dif/agus causes the heartbeat increments to become more nega-
fusion (uncorrelated random walland a random signal with afl/ ~ tively correlated, as is quantified by a lower scaling expo-
power spectrum; the standard errors of these exponents are smalent. (A negative correlation in the interval increments
than the widths of the lines. All estimates of the scaling exponeniméans that an increase in the time between successive beats
are below the estimate for normal diffusion, except for the estimatds likely to be followed by a decrease, and vice verJais

at a postconceptional age of 31. However, only the estimate of thiglea is compatible with that of lyengat al. [10], who sug-
scaling exponent at 32 weeks deviates significantly from that ofgested that the decreased negative autocorrelation of old
normal diffusion. The points plotted are the numbers in the first ronadults as compared to young adults may be due partly to
of Table I. reduced vagal control of the heart in old adults. It is interest-

N ing that the 1f* heartbeat dynamics of healthy young adults
>HP'" hy could be rejected 13 time@nly 1.3% of the  seem to be largely absent from humans with either underde-
time) at the 1% level, with two significant occurrences of yeloped or deteriorating autonomic nervous systems. Further
H<H®""" andh, could be rejected 61 timesnly 6.1% of  research is needed here, since there is disagreement over the
the timg at the 5% level, with 23 significant occurrences of presence of ## fluctuations in adult§8], and since different
H<HPB™"". These results are as expected: the percentages ghalysis methods were used in studying neonates and adults.
null rejections are approximately equal to the significanceysing the above method and time scale in the study of adults
levels, and the numbers of rejections on each side ot the\would shed light on the differences between neonatal and
distribution are comparable_. Thus th_ere are _substantlal differsquit heartbeat dynamics. Our hypothesis could also be
ences between the synthetic Brownian motion and the hearfasteq by comparing structure function exponents other than
beat interval data, both in the percentagégfejections and  tne second-order exponent of @) since the heart rate in
in the proportion of rejections corresponding )  general is not strictly self-affine, but has evidence of multi-
< (HBrowm, fractal scaling42].

Since the power spectrum of the healthy adult heart inter- The application to short heart rate signals illustrates the
vals are usually considered to be approximatelftlive  simplicity and utility of the partition method in estimating
addressed the question of whether this holds for neonates lilge standard error of scaling exponents and in testing the
comparing estimates of the scaling exponent for flickethypothesis of normal diffusion. This technique can similarly
noise,H™ e’ to H for each series studied. Using the spectrallead to a better understanding of the correlation properties of
synthesis method of generating data with &'1gpectrum other time series known to be scaling in the structure func-
(Appendix A), Hficker—0 159 and &ficker=0.001 are the tion [Eq. (1)], power spectruniEq. (3)], or autocorrelation
sample mean and standard error O%Lf the mean of 5000 esfiunction[Eq. (4]
mates of the scaling exponent off 1/fluctuations of 256
points each(Excluding the 115 estimates that violated con- ACKNOWLEDGMENTS
dition (21) would lead toH"*¢'=0.162 ando™*'=0.001) We would like to thank Joseph P. Zbilut of Rush College
The large bias in the estimaktficke’ is evident from Eq(3), of Medicine for helpful discussions. This research was sup-
which implies thaH~0 for a 1f* spectrum. As can be seen ported in parfor MTV) by the Bristol Myers Squibb Foun-
from Table I, H typically ranges fromHficker to [{Brown.  dation and the American Nurses Foundation.
hence, according to Ed3), the spectrum of the neonatal
interbeat intervals varies betweenf2/and 1f. Flicker
noise was not statistically tested as a null hypothesis, since
the value ofH™e" depends heavily on the method off4/ Fractal signals can be generated using spectral synthesis
spectrum generation. [43], the method often employed in studies of dispersional

Postconceptional Age (Weeks)

APPENDIX A: FAST GENERATION
OF FRACTAL SIGNALS
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TABLE I. Hurst exponent estimates of preterm neonatal interbeat intervals. Hurst exponent estimates and standard errors displayed are
the sample mean and standard error of the meavh etimates, each obtained from the dispersional analysis of a segment of 256 successive
increments of time intervals between heart beats. The regression error of each estimate is small enough that(2apdstisatisfied.

“VHi" denotes theith neonate classed as very healtfhealthy without oxygen support“MH i” denotes theith neonate classed

as moderately healththealthy with oxygen support“MU i” denotes theith neonate classed as moderately unheditimnhealthy but not

always on a ventilatgr and “VUi” denotes thd th neonate classed as very unhealtinyhealthy and on a ventilator for entire styidyealth
classifications are described in Appendix B. Weeks 26—35 are the postconceptional ages of the neonate at the times of measurement.
“Mean for health status” gives the mean and standard error of the mean of the Hurst exponent estimates listed for a given health status,
and “Mean for age” gives the mean and standard error of the mean of the Hurst exponent estimates listed for a given postconceptional age.
The lower right cell gives the mean and standard error of the mean of all Hurst exponent estimates listed. Significance levels were
obtained by comparison td%°""=0.488+0.001, as described in the text. N/A: Data are not availdfégnificantly larger tharH 3"

at the 5% level.

Mean Mean

for for
R Week  Week  Week  Week  Week  Week  Week  Week Week Week  health health
Hxop 26 27 28 29 30 31 32 33 34 35 status  status
0.447 0.387 0.364 0.425 0.404 0.532 0267 0.462 0.454 0.483
VH1 ~ *+0.097 =*0.078 =*0.058 =*0.079 =*0.080 =0.031 =+0.048 =*0.071 =*0.036 =*0.035
(M=4) (M=5) (M=5) (M=5) (M=4) (M=6) (M=4) (M=6) (M=6) (M=4)
0.421 0.496 0281 0543 0421 0297 0329 0465 0.449 0.522
VH2  *£0.034 =+0.049 +0.031 =+0.087 +0.025 +0.060 *0.039 +0.044 =*0.046 +0.036
(M=4) (M=3) (M=5) (M=4) (M=6) (M=7) (M=6) (M=6) (M=5) (M=6)
0.403 0490 0.403 0.445 0.488 0393 0570 0418 0272
VH3 N/A +0.024 +0.072 +0.024 +0.039 =*0.027 =*0.024 *0.040 =*0.019 =+0.040
(M=6) (M=8) (M=6) (M=6) (M=6) (M=5) (M=3) (M=6) (M=6)
0.33¢  0.377 0.367 0.409 0.507 0.524 0.551 0.496 0°388 0.388%
VH4  *£0.018 =+0.038 =*0.08 +0.047 +£0.031 +0.020 +0.038 +0.027 N/A N/A +0.014 =*0.014
(M=6) (M=4) (M=6) (M=5) (M=5) (M=5) (M=6) (M=5) (very (very

healthy healthy

0.410 0.248 0.500 0.438 0.241 0.306 0.511 0.359 0.286
VHS5 N/A +0.103 *0.048 =0.074 =0.128 =*=0.038 =*=0.103 =*=0.069 =*=0.053 =*=0.071
(M=6) (M=6) (M=5) (M=6) (M=7) (M=5) (M=5) (M=6) (M=6)

-0.07% 0.37¢  0.140 0.325 0.419 0.186 0.3268 0.350° 0.458
VH6  *£0.040 =*0.031 =*=0.034 =*0.069 =*0.046 =£0.040 =0.037 =0.030 =*=0.026 N/A
(M=5) (M=5) (M=2) (M=6) (M=4) (M=6) (M=5) (M=6) (M=4)

0264 0.26% 0.33% 0289 0.372 0.500 0.392  0.387 0.433
VH7 N/A  +0.011 =0.051 =+0.035 =0.047 =+0.059 =+0.046 =+0.067 =0.037 =+0.043
(M=4) (M=6) (M=6) (M=6) (M=5) (M=6) (M=6) (M=5) (M=5)

0.267 0.541 0.508 0.548 0.480 0.583 0.502 0228 0.548 0.430
MH1  *£0.069 =*0.033 =*0.043 =*=0.028 =*=0.024 =*=0.045 =*=0.051 =*=0.067 =*=0.033 =*0.043
(M=6) (M=4) (M=5) (M=6) (M=6) (M=6) (M=8) (M=5) (M=6) (M=6)

0.42P
0199 029¢ 0.391 0430 0443 0.388 0.353 0.532 0.343  +0.027
MH2  +0.039 =+0.049 +0.052 =0.023 =0.050 =+0.060 *0.042 =0.074 N/A  +0.080 (moder.
(M=5) (M=6) (M=5) (M=5) (M=5) (M=6) (M=6) (M=7) (M=5) healthy
0.401  0.409 0.288 0472 0330 0.168 0487 0464 0.180
MUl  +0.043 +0.027 +0.053 +0.045 +0.035 +0.168 =0.034 =+0.027 N/A
(M=8) (M=1) (M=4) (M=4) (M=5) (M=5) (M=3) (M=6) (M=6) 0.417

0.49f  +0.015
0292 043% 0499 0.384 0587 0515 0523 0567 0.564 =0.030 (all
MU2 N/A  +0.028 =+0.019 +0.068 +0.067 +0.037 =+0.038 =+0.037 +0.038 +0.034 (moder. except
(M=5) (M=6) (M=6) (M=4) (M=6) (M=4) (M=7) (M=5) (M=7) unhlthy) very
healthy
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TABLE I. (Continued.

Mean Mean

for for
R Week  Week  Week  Week  Week Week Week Week Week  Week  health health
H*op 26 27 28 29 30 31 32 33 34 35 status  status
0502 0338  0.502 0.454 0.439 0.516 0.467 0.398 0.359
VU1l  *0.023 #0.020 =*0.023 =+0.039 =*0.050 N/A *+0.029 =0.028 =*0.069 +0.056
(M=6) (M=5) (M=6) (M=6) (M=4) (M=6) (M=5) (M=4) (M=6)
0.412

0.485 0278 0514 0503 0398 021¢ 0459 03701 021F +0.023
VU2  N/A  +0.056 +0.048 =0.068 +0.039 +0.030 =0.060 =+0.037 +0.010 =*0.063 (very
(M=6) (M=5) (M=4) (M=6) (M=7) (M=6) (M=5) (M=4) (M=5) unhithy)

Mean 0.312 0.39¢ 0.346 0.45F 0.42% 0.392 040% 0455 0414 0.387 0.402
for +0.065 =0.023 +0.032 =+0.020 +0.017 =0.043 =0.031 =+0.025 =+0.032 =+0.038 +.010
Age (overal)

aSignificantly smaller tham®°"" at the 5% level.
bSignificantly smaller tham®°"" at the 1% level.
‘Significantly smaller tham®°"" at the 0.1% level.

analysis[21,39. We modify the method of Saug@3] to  of it. For example, of the 5000 fi¥ signals generated for the
enable efficient computations using the fast Fourier transcomputation oﬂqf'ickef, as described in Sec. 1V, 2500 were
form (FFT); Voss also used FFT in simulating fractal the first 257 values of signals of lengtk 2048, generated
Brownian motion[44]. The idea is to obtain a fractal time with the FFT. The other 2500 signals were generated without
series &;,%z,...,X) of even lengthl from random Fourier  truncation, using the first 257 values of signals of length
coefficients &_i;2,.X_(112)+1.---.X2) With a spectral density =258 (the speed of the FFT is not needed for such small

that scales according to the chosen expornte., series. Applying Eq. (6) to each signal yielded increment
-~ 1 series of lengthL=257—1=256. Bassingthwaighte and

S Xl “~ KB’ (A1) Raymond[21] used a similar method of combining the scal-

ing exponent estimates from signals with and without trun-

. L . cation.
with each positive integek corresponding to the frequency

k/I. The amplitudes and phases of the coefficients are ran-

domized, so that APPENDIX B: DATA COLLECTION AND NEONATE

HEALTH STATUSES

k—Gg,g) exp(igy), 1sk=I/2
(A2) The data used herein was studied previously in an inves-
0, —1/2<k=0, tigation of the pattern of neurodevelopment in the preterm
infants. The heart rate data was recorded from a three lead
where G, is a Gaussian random number of zero mean anelectrocardiograph(ECG) digitized at 250 Hz via a
fixed standard deviation, ang, is a random number uni- MiniLogger™ (Sunriver, OR connected to a Nonin 8800
formly distributed between 0 ands2 The fractal time series cardiorespiratory monitor. Data was collected between 7 and
is the real part of the discrete inverse Fourier transform of a.m. for each neonate. The researcher verified that each
the random coefficients: neonate had not been disturbed for the 30 min prior to the
1”2 o data collection. The Anderson Behavioral State Scale, a mea-
. ~ . 2mjk : : :
X;= Re{— 2 XkeXF( —j _) for j=1,2,...]. sure the neonate’s behavioral state_, was re_:coro!ed by hand at
I = ' 1-min intervals. A total of 119 10-min physiological record-
(A3) ings of the ECG were obtained from the 13 neonates over the
ten-week period. Artifacts were detected and edited manu-
If | is chosen to be an integer power of 2, then &8) can  ally.
be computed quickly using the FFT algorithi®2]. Since Thirty-five weeks of postconceptional age was chosen as
fractal Brownian motion has a power spectrum given by Eqthe measuring point for delineating health status because pre-
(3), spectral synthesis can be used to generate a fractal sigrtekm neonates are typically discharged home at this time if
of a given scaling exponemd by settingB=2H+1. Simi-  eating well and displaying a steady weight gain. The health
larly, a 1f* signal can be generated by lettigg= 1. status categories were defined by the usual parameters uti-
An artifact of the spectral synthesis method is that the firstized in clinical practice. The very healthy neonates were
and last point$x, andx,) are strongly correlated. This effect tolerating full feeds, exhibiting steady weight gain, required
can be minimized by generating a fractal series that is mucho ventilatory support, were not receiving supplemental oxy-
longer than the one needed, and then retaining only a portiogen, were on no medications, and were awaiting discharge.
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The moderately healthy neonates, although receiving full The medical conditions of the neonates included respira-
feeds and exhibiting steady weight gain, still requiredtory distress and sepsis early in life, and as each infant grew,
supplemental oxygen, and were not ready for discharge. Thine medical conditions either resolved or became chronic
moderately unhealthy neonates were receiving a combinatiofforonchopulmonary dysphasia and continued ventilatory sup-
of hyperalimentation and enteral nutrition, medicatido-  port). Every infant was treated with theophylline during the
bramycin, Vancomycin, and Theophyllinend supplemental course of hospital stay. All infants with a gestational age
oxygen. The very unhealthy neonates still required the use ajreater than 26 weeks, inappropriate growth for gestational
mechanical ventilation and oxygen to maintain homeostasisage, received vasopressors, presence of congenital anoma-

and also required medicatigAmikacin, Albuterol, Amino- lies, intraventricular hemorrhage greater than grade II, or
phylline, Ceftazidime, Cisapride, Lasix, Fentanyl, Tobramy-substance abuse exposed by maternal history were excluded
cin, and AmphotericirB) and hyperalimentation. from the study.
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