
30

PHYSICAL REVIEW E NOVEMBER 1998VOLUME 58, NUMBER 5
Detection of anomalous diffusion using confidence intervals of the scaling exponent
with application to preterm neonatal heart rate variability

David R. Bickel,* M. Terese Verklan, and Jon Moon
Health Science Center at Houston, The University of Texas, Suite 4.430, 1100 Holcombe Boulevard, Houston, Texas 770

~Received 4 May 1998!

The scaling exponent of the root mean square~rms! displacement quantifies the roughness of fractal or
multifractal time series; it is equivalent to other second-order measures of scaling, such as the power-law
exponents of the spectral density and autocorrelation function. For self-similar time series, the rms scaling
exponent equals the Hurst parameter, which is related to the fractal dimension. A scaling exponent of 0.5
implies that the process is normal diffusion, which is equivalent to an uncorrelated random walk; otherwise, the
process can be modeled as anomalous diffusion. Higher exponents indicate that the increments of the signal
have positive correlations, while exponents below 0.5 imply that they have negative correlations. Scaling
exponent estimates of successive segments of the increments of a signal are used to test the null hypothesis that
the signal is normal diffusion, with the alternate hypothesis that the diffusion is anomalous. Dispersional
analysis, a simple technique which does not require long signals, is used to estimate the scaling exponent from
the slope of the linear regression of the logarithm of the standard deviation of binned data points on the
logarithm of the number of points per bin. Computing the standard error of the scaling exponent using
successive segments of the signal is superior to previous methods of obtaining the standard error, such as that
based on the sum of squared errors used in the regression; the regression error is more of a measure of the
deviation from power-law scaling than of the uncertainty of the scaling exponent estimate. Applying this test
to preterm neonate heart rate data, it is found that time intervals between heart beats can be modeled as
anomalous diffusion with negatively correlated increments. This corresponds to power spectra between 1/f 2

and 1/f , whereas healthy adults are usually reported to have 1/f spectra, suggesting that the immaturity of the
neonatal nervous system affects the scaling properties of the heart rate.@S1063-651X~98!14911-5#

PACS number~s!: 87.10.1e, 05.40.1j
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I. INTRODUCTION

Power-law scaling has been used to describe signal
physical systems as diverse as turbulence@1,2#, the stock
market@3,4#, geophysical phenomena@5#, heart rate variabil-
ity @6–10#, DNA sequence composition@11–13#, and, more
recently, DNA evolution@although they are related, DNA
sequence composition must be distinguished from DNA e
lution since the former deals with spatial autocorrelatio
~see Ref.@14#!, whereas the latter deals with temporal au
correlations. A critical point process with scaling in tim
may result from the self-organization of interacting gen
@15# # @16–19#. A defining characteristic of fractal or multi
fractal time series is the growth of the second-order struc
function, also called the variogram@5#, as a power law in the
time between increments:

^@x~ t i !2x~ t j !#
2&}ut i2t j u2H, ~1!

wherei and j are integers that index times, andH is a posi-
tive real parameter. The increments are assumed to ha
mean of zero:

^x~ t i !2x~ t j !&50. ~2!

For self-affine~monofractal! time series,H is the Hurst ex-
ponent, named after Edwin Hurst for his study of riv
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heights @20#. The Hurst exponent completely characteriz
the scaling properties of self-affine time series, and is rela
to the fractal dimension byD5E2H11, whereE is the
Euclidean dimension of the signal@21#. Although the
second-order exponentH is only one of the infinite numbe
of structure function exponents of a multifractal process@5#,
H is important as a descriptive parameter in that it measu
the scaling in second-order functions such as the spe
density and autocorrelation. A generalization of the Wien
Khintchine theorem for nonstationary processes@5# yields
the power spectral density

S~ f !;
1

f 2H11 ~3!

for the range of frequenciesf corresponding to the time
scales for which Eq.~1! holds. Increments can be treated
the first derivative of a smoothed signal, leading to a spec
density of increments proportional to (f 2H21)21, which,
again using the Wiener-Khintchine theorem@22#, provides
the autocorrelationF~t! in the increments of a signal,

F~t!;
1

utu2~12H ! , ~4!

valid for lag timest corresponding to the frequencies of E
~3!. The last step assumes the stationarity of the increm
process, requiring that 0<H,1; Mandelbrot and van Nes
noted this restriction on the Hurst exponent of fractal Brow
ian motion, a self-affine process with stationary increme
6440 © 1998 The American Physical Society
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called fractal Brownian noise@23#. The autocorrelation~4! is
positive for H.0.5, negative forH,0.5, and zero forH
50.5, the case of normal diffusion~Brownian motion! or an
uncorrelated random walk. A process withHÞ0.5 can be
modeled as anomalous diffusion or as a correlated cont
ous time random walk; see Refs.@24–26# for relationships
between the two formalisms. Alternately, discrete-ev
counts that scale as Eq.~3! can be described as fractal-ra
stochastic point processes@27#.

Several techniques for estimatingH have been proposed
including rescaled-range (R/S) analysis@20#, autocorrelation
analysis@28,29#, dispersional analysis@30#, spectral analysis
@31#, wavelet analysis@32,5#, wavelet packet analysis@33#,
detrended fluctuation analysis@7,10#, maximum likelihood
analysis @34#, and, for point processes, Allan-Fano fact
analysis@Fano factor analysis@35,9,36#, a method related to
Allan-Fano factor analysis, does not directly estimateH
since it applies to stationary event counts with power spe
between 1/f 1 and 1/f 0, rather than to nonstationary eve
counts with power spectra given by Eq.~3!# @37,38,9,27#.
Using synthetically generated fractal Brownian motion s
nals, dispersional and spectral analyses usually yield lo
bias and higher precision~statistical efficiency! in the esti-
mates ofH than rescaled-range and correlation analyses@39#.
When comparing the dispersional method to the spec
method, the former yields better results when the fractal
nal is generated using a covariance matrix@40#, while the
latter performs better when the signal is generated us
spectral synthesis@39# ~Appendix A!. Maximum likelihood
estimation has lower bias and higher precision than o
methods@39,40#, but the time complexity of the optimizatio
involved makes it less practical@39#. Although the proposed
test is compatible with all of these estimation techniques,
use dispersional analysis herein because it is simple and
cause the effects of short signal lengths and additive w
noise on the dispersional estimation ofH have been studied
numerically@21#.

II. DISPERSIONAL ANALYSIS

Dispersional analysis provides an estimate of the sca
exponent from the dependence of the standard deviatio
binned data on the bin sizes. In this method, a time se
SL11 consisting ofL11 measurements,x̂(t i), sampled at
times t i5 iDt( i 51,2, . . . ,L11), is differenced to obtain a
vector of incrementsS8 defined by

S8[~j1 ,j2 ,...,jL!, ~5!

where each increment is the difference between two suc
sive measurements:

j i[ x̂~ t i 11!2 x̂~ t i ! with i 51,2, . . . ,L. ~6!
u-
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S8 is partitioned intoN disjoint sets ofm increments per set
N is the greatest integer less than or equal toL/m. The
elements of each bin are averaged to yield a time seriesSm8 of
N valuesym j :

Sm8 [~ym,1 ,ym,2 ,...,ym,N!, ~7!

where

ym, j[
1

m (
i 5~ j 21!m11

jm

j i5
x̂~ t jm11!2 x̂~ t ~ j 21!m11!

m

for j 51,2, . . . ,N. ~8!

Assuming that the signal follows Eq.~2!, the increment ex-
pected mean is zero (^j&50), and thus the sample standa
deviation ofS8 at resolutionm can be defined as

ŝm[S 1

N (
j 51

N

ym, j
2 D 1/2

. ~9!

This differs from the sample standard deviation definiti
which is typically used in dispersional analysis@41#, and
which would be more appropriate if the expected mean w
unknown:

ŝm~unknown̂j&![F 1

N21 (
j 51

N S ym, j2
1

N (
j 51

N

ym, j D 2G1/2

.

~10!

Combining Eqs.~8! and ~9! yields

ŝm5
1

m H 1

N (
j 51

N

@ x̂~ t jm11!2 x̂~ t ~ j 21!m11!#2J 1/2

. ~11!

The sample standard deviationŝm is an unbiased estimato
of the expected standard deviation at resolutionm, which,
using Eq.~1!, is

sm[
1

m
$^@x~ t jm11!2x~ t ~ j 21!m11!#2&%1/2

5
C

m
~ utm2t0u2H!1/25

C

m
~mDt !H5

s1

m12H , ~12!

where C is a constant of proportionality. Taking the loga
rithm of Eq. ~12! yields a straight line with slope2(1
2H) and intercept logs1:

log sm52~12H !log m1 log s1 . ~13!

Dispersional analysis uses sample standard deviationsŝm to
obtain estimates ofH ands1 , respectivelyĤ andŝ, through
linear regression by minimizing the sum of squared error
«2[ (
m5mmin,2mmin,4mmin ,...,mmax/2,mmax

@2~12Ĥ !log m1 log ŝ2 log ŝm#2 for 1<mmin,mmax<
L

16
. ~14!
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The range of bin sizesm is determined by selecting mini
mum and maximum bin sizes,mmin andmmax, for which Eq.
~12! holds; mmax has an upper limit ofL/16, since sample
standard deviationsŝm are unreliable estimates of populatio
standard deviationssm for largerm @41#. Bin sizes for which
ŝm50 must be excluded from the analysis@41# because the
logarithm of zero is undefined.

III. CONFIDENCE INTERVALS
AND HYPOTHESIS TESTING

In using the estimated valueĤ as a descriptive statistic
confidence intervals can be obtained using its estimated s
dard errorŝ Ĥ . The standard error can also be used to test
hypothesis that a time series is normal diffusion as oppo
to anomalous diffusion. After discussing two widely us
methods of computingŝ Ĥ , we introduce a third techniqu
that combines the advantages of the previous methods.

Standard errors are typically calculated in one of t
ways. The first method equates the estimated standard
of Ĥ with that of the estimated slope2(12Ĥ) obtained
from the minimized squared error«2 of the regression

ŝ Ĥ~«![S n«2

~n22!2@n(m~ log m!22~(mlog m!2# D
1/2

,

~15!

wheren is the number of bin sizesm that are used in regres
sion ~14! and in the sums of Eq.~15!. This method appar-
ently has the advantage that the standard error can be
mated from a single time series. However,ŝ Ĥ(«) is more of
a measure of the deviation of the data from Eq.~12! than it is
an accurate measure of the variability inĤ. This unreliability
is evident from previous uses of the technique. For exam
Bassingthwaighte and Raymond@21# used Eq.~15! to com-
pute ŝ Ĥ(«) for three synthetically generated data sets,
length 213 points each, withH50.2, 0.5, and 0.8. In the
second case, they obtainedĤ50.54 andŝ Ĥ50.012, which
implies that the trueH value of 0.5 lies well outside the 95%
confidence interval ofĤ, and that the null hypothesis tha
H50.5 would thus be wrongly rejected, assuming that
errors of the regression are independent and normally dis
uted. The residuals, however, actually strongly violate in
pendence, as is seen by the typical systematic oscillation
log ŝm around the line of regression, which partly explai
why ŝ Ĥ(«) performs so poorly as a measure of the variat
in Ĥ.

Bassingthwaighte and Raymond@21# noted that the stan
dard deviation of manyĤ values provides a stronger es
mate of the variability inĤ than does Eq.~15! using a single
value ofĤ. If Ĥ i is the estimate of the scaling exponent f
the i th of M time series assumed to have the same sca
exponentH, then the estimate ofH is the sample mean of th
Ĥ i values,

Ĥ[
1

M (
i 51

M

Ĥi , ~16!
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and the estimated standard error in that estimate is
sample standard deviation divided by the square root of
sample size:

ŝ Ĥ[S 1

M ~M21! (
i 51

M

~Ĥ i2Ĥ !2D 1/2

. ~17!

The standard errorŝ Ĥ can be used to compute confiden
intervals and test hypotheses using thet distribution if the
population ofĤ i values is normal, an assumption that hol
for independent dispersional estimates of the scaling ex
nent of fractal Brownian motion@21#. Even without assum-
ing normality,ŝ Ĥ is a useful measure of uncertainty in tha
by Chebychev’s inequality, the probability that the scali
exponent falls outside the rangeĤ6Kŝ Ĥ is less than or
equal to 1/K2 for any distribution. The drawback of this tech
nique is that it requires multiple time series that are knowa
priori to have the same fractal scaling.

We propose the partition method, a one-series varian
the multiple-estimate method of computingŝ Ĥ . TheML in-
crements of a single fractal time seriesSML11 are partitioned
into M nonoverlapping subseries ofL increments each. Then
for i 51,2, . . . ,M , dispersional analysis is used to obta
Ĥ i , the estimate the scaling exponent of thei th increment
subseries. The estimate ofH for the original time series,Ĥ,
is found using Eq.~16! and the standard errorŝ Ĥ is found
using Eq.~17!. This method combines the strengths of t
two techniques described above in that it provides a g
estimate of the variability in the estimate of the scaling e
ponent while requiring only one time series.

The standard error in the scaling exponent estimate ca
used to test hypotheses about the scaling exponentH of a
fractal time seriesSML11 . The most important question in
this regard is whether a data set can be modeled as no
diffusion (H50.5) or anomalous diffusion (HÞ0.5), since
the increments of the former are uncorrelated, whereas th
of the latter have positive (H.0.5) or negative (H,0.5)
autocorrelations@Eq. ~4!#. One could test the null hypothes
that H50.5 using thez test with Ĥ and ŝ Ĥ , but this is
unreliable since for finite data lengthsL becauseĤ is a bi-
ased estimator ofH @21#, i.e., Ĥ from Eq. ~16! does not
asymptotically approachH asM→`. Thus, instead of com-
paring Ĥ to 0.5, it is more meaningful to compareĤ to
ĤBrown, the dispersional analysis estimate ofH for simulated
ordinary Brownian motion (H50.5). Since the increment
of Brownian motion~normal diffusion! are independent and
normally distributed, the estimates of the scaling expone
ĤBrown, and that of its standard error,ŝ

Ĥ

Brown
, can be com-

puted from the dispersional analysis ofMBrown series ofL
computer-generated Gaussian random numbers of zero m
and unit standard deviation. ThenĤBrown and ŝ

Ĥ

Brown
are,

respectively, the sample mean and standard error in the m
of theMBrown estimates,Ĥ i

Brown, with each estimate obtaine
by the dispersional analysis of a stochastic series of lengtL.
The estimatesĤ and ĤBrown must be computed using th
same value ofL since the bias in estimates ofH depends
strongly on the number of increments used@21#. We usê Ĥ&
and ^ĤBrown& to denote expectation values of estimates, t
is
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^Ĥ&[ lim
M→`

1

M (
i 51

M

Ĥi ~18!

and

^ĤBrown&[ lim
MBrown→`

1

MBrown (
i 51

MBrown

Ĥ i
Brown. ~19!

The original time seriesSML11 is ordinary Brownian motion
if ^Ĥ&5^ĤBrown&, positively correlated anomalous diffusio
if ^Ĥ&.^ĤBrown&, or negatively correlated anomalous diffu
sion if ^Ĥ&,^ĤBrown&. Thus the null hypothesish0 is that
^Ĥ&5^ĤBrown& with the alternate hypothesisha :^Ĥ&
Þ^ĤBrown&. This test of the equality of population means
performed using the two-tailed, pooled~two-sample! t test
@22# using the sample meansĤ andĤBrown and the standard
errorsŝ and ŝBrown. This test is used to determine whethe
for a seriesSML11 , the increment autocorrelation~4! mea-
sured byĤ is statistically significant, and, if so, whether it
positive or negative. Section IV illustrates the use of the t
with heart rate data. Alternately, one could computeĤ di-
rectly from the original data without partitioning, and u
that estimate withĤBrown and ŝBrown in a two-tailed, one-
samplet test to testh0 andha , but then the uncertainty (ŝ)
in Ĥ would be unavailable.

In theory, one could similarly test other hypotheses ab
the scaling exponent of a time seriesSML11 , for example,
whetherH50, in which case Eq.~3! implies that the power
spectrum goes like 1/f 1; this is sometimes called flicke
noise. Then dispersional analysis would be applied to se
of 1/f 1 fluctuations to obtain the scaling exponent’s sam
meanĤflicker and standard error of the meanŝflicker. These
values would be used in place ofĤBrown and ŝBrown in the
above procedure in order to determine whetherĤ is signifi-
cantly different fromĤflicker, which would mean thatSML11
does not have a 1/f 1 spectrum. However, this test has limite
reliability because the bias in the estimateĤflicker has a strong
dependence on the method used to simulate the 1/f 1 fluctua-
tions, since, in general, biases in estimating the scaling
ponent vary widely when using different techniques of fra
tal Brownian motion generation@40#. The test works bes
when the null hypothesis is ordinary Brownian motion b
cause simulations of normal diffusion (H50.5) are superior
to those of anomalous diffusion (HÞ0.5).

An alternate test of whether an estimate from a frac
time series indicates a significant deviation inH from 0.5 is
based on estimates of the scaling exponent after reshuf
the increments. Using an estimation technique equivalen
dispersional analysis, Mantegna@4# found thatĤ, the esti-
mate ofH for a stock index time series, is 0.5760.02, while
Ĥshuffled, the estimate for the same data randomly blende
time, is only 0.4960.01. He concluded thatĤ differed sig-
nificantly from Ĥshuffled, and that there was therefore co
pling between the price and time. However, his confide
intervals were presumably computed with Eq.~15!, which, as
argued above, is a highly unreliable measure of uncertai
This test could be improved by randomly reordering the
,
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crements a large number of times, and then compu
Ĥshuffledas the sample mean andŝshuffledas the standard erro
of the mean of the scaling exponent estimates of the
shuffled data increments. Then the one-sided, one-samt
test could be applied usingĤ, Ĥshuffled, andŝshuffledto deter-
mine whether the time series being tested is normally dif
sive (H50.5), superdiffusive (H.0.5), or subdiffusive (H
,0.5). The two-samplet test could be used instead if th
time series is partitioned, so thatĤ and ŝ are the sample
mean and standard error of the estimates from the subse
TestingH using the reshuffling technique directly determin
whether there is significant autocorrelation@Eq. ~4!# in the
data increments without requiring a comparison to simula
Brownian motion. Nonetheless, the method of comparingĤ
to ĤBrown is preferred when multiple time series are test
becauseĤBrown only has to be computed once, whereas,
the reordering method,Ĥshuffledmust be recomputed for eac
time series. Using the same standard of comparisonĤBrown

for all data sets is computationally efficient and enables c
sistent hypothesis testing from data set to data set.

IV. APPLICATION TO HEART RATE VARIABILITY

The estimation of the scaling exponent of the adult hum
heart rate has received considerable attention over the
two decades. The most popular estimation method is spe
analysis, which indirectly estimatesH since anomalous dif-
fusion has the spectrumS( f ) given by Eq.~3!. For healthy
subjects, many researchers~e.g., Refs.@7,10,9#! report spec-
tra close toS( f );1/f 1, equivalent toH'0, while others@8#
reportS( f );1/f 2, equivalent toH'0.5 ~normal diffusion!.
Subjects with congestive heart failure tend to have eleva
scaling exponents@7,8,9#; for example, Penget al. @7# found
that they are closer toH'0.5. Obtaining reliable confidenc
intervals ofH and statistically testing the hypothesis thatH
50.5 can potentially resolve discrepancies in the literat
while facilitating the prediction of patients’ health.

We used dispersional analysis with hypothesis testing
statistically quantify scaling in the neonatal heart rate. Sin
the parasympathetic nervous system of neonates is no
completely developed, their nervous control of the heart b
differs dramatically from that of adults. Comparing the sc
ing exponent of adults to that of neonates would reveal
extent to which this difference affects the scaling propert
of the heart rate.

The times between heartbeats~R-R intervals! of 13 pre-
term neonates were measured for approximately 10
weekly for ten weeks, beginning when the neonates ha
postconceptional age of 26 weeks and ending when t
were 35 weeks old. Thus, there would be 130 series of in
beat intervals, but 11 of the series could not be recorded,
either to a medical condition or a discharge before week
so a total of 119 series were analyzed. Appendix B descr
the data collection. Each series of successive interevent ti
is treated as a time series for the purposes of dispersi
analysis, even though the independent variable is the inte
number rather than the time of measurement. The inte
number is not converted to units of time, as this would ca
information to be lost in the interpolation of the intervals.

Ĥ, the estimate of the scaling exponentH, and ŝ Ĥ , the
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standard error of the estimate, were computed for each in
val series using the partition method described in Sec.
First, the increments« i for each series were obtained usin

« i[ x̂i 112 x̂i , ~20!

where x̂i is the i th time interval between two successiv
heartbeats. Then each increment series was partitioned
M subseries of 256 increments each (L5256), discarding
the increments at the end of each increment series, i.e.,
the increments« i for which i<ML were analyzed. Disper
sional analysis was performed on each increment subs
with Eqs. ~7!–~14!, to obtain scaling exponent estimatesĤ i
for i 51,2, . . . ,M , using bin sizesm from mmin51 to mmax
516. Since dispersional analysis assumes that the stan
deviations of binned data scale as Eq.~12!, each estimateĤ i
was regarded as reliable if its regression error« i was small
enough to satisfy

ŝ Ĥi
~« i !,1/10, ~21!

whereŝ Ĥi
(« i) is defined by Eq.~15! with n55. Of the 703

increment subseries available, 635 yielded reliable estim
of the scaling exponent. RedefiningM as the number of re
liable estimates for an increment series,Ĥ and ŝ Ĥ were ob-
tained for each of 119 original interval series using Eqs.~16!
and ~17! with the reliable estimatesĤ i . One of the interval
series is displayed in Fig. 1, and the estimation of the sca
exponent of that series is illustrated in Fig. 2. Figure 3 sho
the estimated exponents and exponent standard errors fo
series of one neonate, including the series of Fig. 1. T
corresponding results for all neonates are displayed in T
I. Consistent with Refs.@7–9#, the mean scaling exponent o
‘‘very healthy’’ subjects is less than that of other subjec
but this is not statistically significant. The scaling expone
estimates are not significantly correlated with age.

In determining whether an interval series is Brownian m
tion ~an uncorrelated random walk!, Ĥ and ŝ Ĥ were used
with their counterparts from simulated Brownian increme
in a two-sample, one-sidedt test, as outlined in Sec. III. We

FIG. 1. Tachogram: Interbeat interval vs interval number fo
very healthy neonate~VH1 of Table I!, measured at a postconce
tional age of 35 weeks. As mentioned in the text, intervals bey
1537 were discarded and are not shown. The subject was no
ventilator or oxygen support at the time of measurement, and
was breathing autonomously. Increments were obtained for dis
sional analysis by subtracting each interval from its subsequen
terval. Figure 2 illustrates the dispersional analysis of the first
third subseries of 256 increments.
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found the sample mean (ĤBrown50.488) and standard erro

of the mean (ŝ
Ĥ

Brown
50.001) of 5000 valuesĤ i

Brown, the es-

timate of the scaling exponent for thei th series of 256 inde-
pendent Gaussian random numbers with zero mean and
standard deviation.@Of the 5000 estimates, only two of them
violated Eq.~21!, so their effect onĤBrown and ŝBrown are
negligible.# Using the values of Table I, a comparison
ĤBrown to Ĥ for each series indicates that at the 0.1%~re-
spectively 1%! significance level, the null hypothesi
h0 :^Ĥ&5^ĤBrown& was rejected for seven~respectively 21!
of 119 series, andĤ,ĤBrown in all significant cases. At the
5% level,h0 was rejected for 42 series, 41 of which satisfi
Ĥ,ĤBrown. Therefore, the null hypothesis could be reject
5.9% of the time at the 0.1% level, 17.6% of the time at t
1% level, and 35.3% of the time at the 5% level. The fa
that each percentage of null rejections is several times
corresponding significance level and thatĤ,ĤBrown in all or
nearly all significant cases require that many of the inter
series be modeled as subdiffusion (H,0.5) rather than nor-
mal diffusion.

For purposes of comparison, this test was also applie
1000 series, each consisting of 1536 independent Gaus
random numbers of zero mean and unit standard deviat
usingL5256 andM56, the median number of subseries p
increment series for the heart interval data analyzed. The
hypothesish0 of this synthetic data set could be rejected o
time ~only 0.1% of the time! at the 0.1% level, withĤ

d
on
us
r-

n-
d

FIG. 2. Dispersional analysis plots: Logarithm of standard
viation vs logarithm of bin size, with regression lines. Dispersio
analysis is performed on each 256-increment segment of the
plotted in Fig. 1 to estimate the scaling exponent of that data. P
for two such segments are displayed here.~a! Dispersional analysis
plot using the first 256 increments of the data displayed in Fig
The close fit of the regression line to the data is quantified by
standard error of the slope, which, based on Eq.~15!, is only 0.031.
This standard error satisfies condition~21!, so the slope of20.531
is added to 1 to obtain 0.469 as the estimate of the scaling expo
for the segment of 256 increments. This estimate was averaged
estimates from the other three increment segments that sati
condition~21! to obtain the estimate and standard error of the sc
ing exponent for the series of Fig. 1. These values are in the up
right corner of Table I, and are plotted as the last point and e
bounds of Fig. 3.~b! Dispersional analysis plot using incremen
513–768 of the data displayed in Fig. 1. The poor fit of the regr
sion line to the data is quantified by the standard error of the slo
which, based on Eq.~15!, is 0.102. This high standard error doe
not satisfy condition~21!, so the slope was not used to estimate t
scaling exponent.
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.ĤBrown; h0 could be rejected 13 times~only 1.3% of the
time! at the 1% level, with two significant occurrences
Ĥ,ĤBrown; andh0 could be rejected 61 times~only 6.1% of
the time! at the 5% level, with 23 significant occurrences
Ĥ,ĤBrown. These results are as expected: the percentag
null rejections are approximately equal to the significan
levels, and the numbers of rejections on each side of tt
distribution are comparable. Thus there are substantial dif
ences between the synthetic Brownian motion and the he
beat interval data, both in the percentage ofh0 rejections and
in the proportion of rejections corresponding tôĤ&
,^ĤBrown&.

Since the power spectrum of the healthy adult heart in
vals are usually considered to be approximately 1/f 1, we
addressed the question of whether this holds for neonate
comparing estimates of the scaling exponent for flic
noise,Ĥflicker, to Ĥ for each series studied. Using the spect
synthesis method of generating data with a 1/f 1 spectrum
~Appendix A!, Ĥflicker50.159 and ŝflicker50.001 are the
sample mean and standard error of the mean of 5000
mates of the scaling exponent of 1/f 1 fluctuations of 256
points each.~Excluding the 115 estimates that violated co
dition ~21! would lead toĤflicker50.162 andŝflicker50.001.!
The large bias in the estimateĤflicker is evident from Eq.~3!,
which implies thatH'0 for a 1/f 1 spectrum. As can be see
from Table I, Ĥ typically ranges fromĤflicker to ĤBrown;
hence, according to Eq.~3!, the spectrum of the neonata
interbeat intervals varies between 1/f 2 and 1/f 1. Flicker
noise was not statistically tested as a null hypothesis, s
the value ofĤflicker depends heavily on the method of 1/f 1

spectrum generation.

FIG. 3. Scaling exponent estimates: Scaling exponent estim
of the interbeat intervals of a very healthy neonate~VH1 of Table
I!. Error bars were computed using twice the standard error of
mean scaling exponent in order to roughly estimate 95% confide
intervals. Figure 2 illustrates how the mean and standard erro
the scaling exponent were estimated at the 35th week; other w
were treated similarly. The horizontal lines give the mean simula
scaling exponent values for 256-increment segments of normal
fusion ~uncorrelated random walk! and a random signal with a 1/f 1

power spectrum; the standard errors of these exponents are sm
than the widths of the lines. All estimates of the scaling expon
are below the estimate for normal diffusion, except for the estim
at a postconceptional age of 31. However, only the estimate of
scaling exponent at 32 weeks deviates significantly from tha
normal diffusion. The points plotted are the numbers in the first r
of Table I.
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V. DISCUSSION AND CONCLUSIONS

Using the partition method of estimating the standard
ror of the scaling exponent, we found that a statistically s
nificant number of preterm neonatal heartbeat series are
diffusive (H,0.5). Neonatal beat-to-beat dynamics ran
between 1/f 1 fluctuations (H50) and normal diffusion (H
50.5) on a scale ofmmin51 beat tommax516 beats. Iyengar
et al. @10# found that the healthy young adult heartbeat h
an approximately 1/f 1 power spectrum on a scale betwe
four and 30 beats, which would imply that the scaling exp
nent is generally higher for preterm neonates than for adu
The preterm neonate intervals thus appear to be closer t
uncorrelated random walk, whereas the adult interval inc
ments have stronger negative autocorrelations@Eq. ~4!#. We
hypothesize thatthe difference in the heart rate scaling be
tween neonates and adults reflects the immaturity of the n
natal autonomic nervous system. In particular, the parasym
pathetic nervous system~vagus! is not fully developed until a
year after birth. It is likely that, during the maturation of th
nervous system, the increasing regulation of the heart by
vagus causes the heartbeat increments to become more
tively correlated, as is quantified by a lower scaling exp
nent. ~A negative correlation in the interval incremen
means that an increase in the time between successive
is likely to be followed by a decrease, and vice versa.! This
idea is compatible with that of Iyengaret al. @10#, who sug-
gested that the decreased negative autocorrelation of
adults as compared to young adults may be due partly
reduced vagal control of the heart in old adults. It is intere
ing that the 1/f 1 heartbeat dynamics of healthy young adu
seem to be largely absent from humans with either unde
veloped or deteriorating autonomic nervous systems. Fur
research is needed here, since there is disagreement ove
presence of 1/f 1 fluctuations in adults@8#, and since different
analysis methods were used in studying neonates and ad
Using the above method and time scale in the study of ad
would shed light on the differences between neonatal
adult heartbeat dynamics. Our hypothesis could also
tested by comparing structure function exponents other t
the second-order exponent of Eq.~1! since the heart rate in
general is not strictly self-affine, but has evidence of mu
fractal scaling@42#.

The application to short heart rate signals illustrates
simplicity and utility of the partition method in estimatin
the standard error of scaling exponents and in testing
hypothesis of normal diffusion. This technique can simila
lead to a better understanding of the correlation propertie
other time series known to be scaling in the structure fu
tion @Eq. ~1!#, power spectrum@Eq. ~3!#, or autocorrelation
function @Eq. ~4!#.
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APPENDIX A: FAST GENERATION
OF FRACTAL SIGNALS

Fractal signals can be generated using spectral synth
@43#, the method often employed in studies of dispersio
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TABLE I. Hurst exponent estimates of preterm neonatal interbeat intervals. Hurst exponent estimates and standard errors dis
the sample mean and standard error of the mean ofM estimates, each obtained from the dispersional analysis of a segment of 256 succ
increments of time intervals between heart beats. The regression error of each estimate is small enough that condition~21! is satisfied.
‘‘VH i’’ denotes thei th neonate classed as very healthy~healthy without oxygen support!, ‘‘MH i’’ denotes theith neonate classed
as moderately healthy~healthy with oxygen support!, ‘‘MU i ’’ denotes thei th neonate classed as moderately unhealthy~unhealthy but not
always on a ventilator!, and ‘‘VUi ’’ denotes thei th neonate classed as very unhealthy~unhealthy and on a ventilator for entire study!; health
classifications are described in Appendix B. Weeks 26–35 are the postconceptional ages of the neonate at the times of me
‘‘Mean for health status’’ gives the mean and standard error of the mean of the Hurst exponent estimates listed for a given hea
and ‘‘Mean for age’’ gives the mean and standard error of the mean of the Hurst exponent estimates listed for a given postconcep
The lower right cell gives the mean and standard error of the mean of all Hurst exponent estimates listed. Significance lev
obtained by comparison toĤBrown50.48860.001, as described in the text. N/A: Data are not available.*Significantly larger thanĤBrown

at the 5% level.

Ĥ6ŝ Ĥ

Week
26

Week
27

Week
28

Week
29

Week
30

Week
31

Week
32

Week
33

Week
34

Week
35

Mean
for

health
status

Mean
for

health
status

0.447 0.387 0.364 0.425 0.404 0.532 0.267a 0.462 0.454 0.483
VH1 60.097 60.078 60.058 60.079 60.080 60.031 60.048 60.071 60.036 60.035

(M54) (M55) (M55) (M55) (M54) (M56) (M54) (M56) (M56) (M54)

0.421 0.496 0.251b 0.543 0.421a 0.297a 0.329b 0.465 0.449 0.522
VH2 60.034 60.049 60.031 60.087 60.025 60.060 60.039 60.044 60.046 60.036

(M54) (M53) (M55) (M54) (M56) (M57) (M56) (M56) (M55) (M56)

0.403a 0.490 0.403a 0.445 0.488 0.393a 0.570 0.418a 0.272b

VH3 N/A 60.024 60.072 60.024 60.039 60.027 60.024 60.040 60.019 60.040
(M56) (M58) (M56) (M56) (M56) (M55) (M53) (M56) (M56)

0.330c 0.377 0.367 0.409 0.507 0.524 0.551 0.496 0.388c 0.388c

VH4 60.018 60.038 60.08 60.047 60.031 60.020 60.038 60.027 N/A N/A 60.014 60.014
(M56) (M54) (M56) (M55) (M55) (M55) (M56) (M55) ~very ~very

healthy! healthy!

0.410 0.248b 0.500 0.438 0.241c 0.306 0.511 0.359 0.256a

VH5 N/A 60.103 60.048 60.074 60.128 60.038 60.103 60.069 60.053 60.071
(M56) (M56) (M55) (M56) (M57) (M55) (M55) (M56) (M56)

20.075c 0.379a 0.140 0.325 0.419 0.186c 0.326a 0.350b 0.458
VH6 60.040 60.031 60.034 60.069 60.046 60.040 60.037 60.030 60.026 N/A

(M55) (M55) (M52) (M56) (M54) (M56) (M55) (M56) (M54)

0.264c 0.262b 0.338b 0.288b 0.372 0.500 0.392 0.357a 0.433
VH7 N/A 60.011 60.051 60.035 60.047 60.059 60.046 60.067 60.037 60.043

(M54) (M56) (M56) (M56) (M55) (M56) (M56) (M55) (M55)

0.267a 0.541 0.508 0.548 0.480 0.583 0.502 0.228a 0.548 0.430
MH1 60.069 60.033 60.043 60.028 60.024 60.045 60.051 60.067 60.033 60.043

(M56) (M54) (M55) (M56) (M56) (M56) (M58) (M55) (M56) (M56)
0.421a

0.199b 0.290a 0.391 0.430 0.443 0.388 0.353a 0.532 0.343 60.027
MH2 60.039 60.049 60.052 60.023 60.050 60.060 60.042 60.074 N/A 60.080 ~moder.

(M55) (M56) (M55) (M55) (M55) (M56) (M56) (M57) (M55) healthy!

0.401 0.409 0.258b 0.472 0.330a 0.168c 0.487 0.464 0.180c

MU1 60.043 60.027 60.053 60.045 60.035 60.168 60.034 60.027 N/A
(M58) (M51) (M54) (M54) (M55) (M55) (M53) (M56) (M56) 0.417c

0.491
a

60.015
0.292b 0.435a 0.499 0.384 0.587* 0.515 0.523 0.567 0.564 60.030 ~all

MU2 N/A 60.028 60.019 60.068 60.067 60.037 60.038 60.037 60.038 60.034 ~moder. except
(M55) (M56) (M56) (M54) (M56) (M54) (M57) (M55) (M57) unhlthy.! very

healthy!
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TABLE I. ~Continued!.

Ĥ6ŝ Ĥ

Week
26

Week
27

Week
28

Week
29

Week
30

Week
31

Week
32

Week
33

Week
34

Week
35

Mean
for

health
status

Mean
for

health
status

0.502 0.338b 0.502 0.454 0.439 0.516 0.467 0.398 0.359
VU1 60.023 60.020 60.023 60.039 60.050 N/A 60.029 60.028 60.069 60.056

(M56) (M55) (M56) (M56) (M54) (M56) (M55) (M54) (M56)
0.412b

0.485 0.278a 0.514 0.503 0.398a 0.219b 0.459 0.371b 0.211a 60.023
VU2 N/A 60.056 60.048 60.068 60.039 60.030 60.060 60.037 60.010 60.063 ~very

(M56) (M55) (M54) (M56) (M57) (M56) (M55) (M54) (M55) unhlthy.!

Mean 0.312a 0.390a 0.346c 0.451a 0.423b 0.397a 0.405b 0.455 0.414a 0.387a 0.402c

for 60.065 60.023 60.032 60.020 60.017 60.043 60.031 60.025 60.032 60.038 6.010
Age ~overall!

aSignificantly smaller thanABrown at the 5% level.
bSignificantly smaller thanABrown at the 1% level.
cSignificantly smaller thanABrown at the 0.1% level.
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analysis@21,39#. We modify the method of Saupe@43# to
enable efficient computations using the fast Fourier tra
form ~FFT!; Voss also used FFT in simulating fract
Brownian motion@44#. The idea is to obtain a fractal tim
series (x̂1 ,x̂2 ,...,x̂l) of even lengthl from random Fourier
coefficients (x̃2 l /2 ,x̃2( l /2)11 ,...,x̃l /2) with a spectral density
that scales according to the chosen exponentb, i.e.,

Sk}ux̃ku2;
1

kb , ~A1!

with each positive integerk corresponding to the frequenc
k/ l . The amplitudes and phases of the coefficients are
domized, so that

x̃k5H S Gk

k2b/2Dexp~ ifk!, 1<k< l /2

0, 2 l /2<k<0,

~A2!

whereGk is a Gaussian random number of zero mean
fixed standard deviation, andfk is a random number uni
formly distributed between 0 and 2p. The fractal time series
is the real part of the discrete inverse Fourier transform
the random coefficients:

x̂ j5ReF1

l (
k52 l /2

l /2

x̃kexpS 2 i
2p jk

l D G for j 51,2, . . . ,l .

~A3!

If l is chosen to be an integer power of 2, then Eq.~A3! can
be computed quickly using the FFT algorithm@22#. Since
fractal Brownian motion has a power spectrum given by E
~3!, spectral synthesis can be used to generate a fractal s
of a given scaling exponentH by settingb52H11. Simi-
larly, a 1/f 1 signal can be generated by lettingb51.

An artifact of the spectral synthesis method is that the fi
and last points~x̂1 andx̂l! are strongly correlated. This effec
can be minimized by generating a fractal series that is m
longer than the one needed, and then retaining only a por
s-

n-

d

f

.
nal

t

h
on

of it. For example, of the 5000 1/f 1 signals generated for th
computation ofĤflicker, as described in Sec. IV, 2500 wer
the first 257 values of signals of lengthl 52048, generated
with the FFT. The other 2500 signals were generated with
truncation, using the first 257 values of signals of lengtl
5258 ~the speed of the FFT is not needed for such sm
series!. Applying Eq. ~6! to each signal yielded incremen
series of lengthL5257215256. Bassingthwaighte an
Raymond@21# used a similar method of combining the sca
ing exponent estimates from signals with and without tru
cation.

APPENDIX B: DATA COLLECTION AND NEONATE
HEALTH STATUSES

The data used herein was studied previously in an inv
tigation of the pattern of neurodevelopment in the prete
infants. The heart rate data was recorded from a three
electrocardiograph~ECG! digitized at 250 Hz via a
MiniLogger™ ~Sunriver, OR! connected to a Nonin 8800
cardiorespiratory monitor. Data was collected between 7
9 a.m. for each neonate. The researcher verified that e
neonate had not been disturbed for the 30 min prior to
data collection. The Anderson Behavioral State Scale, a m
sure the neonate’s behavioral state, was recorded by ha
1-min intervals. A total of 119 10-min physiological record
ings of the ECG were obtained from the 13 neonates over
ten-week period. Artifacts were detected and edited ma
ally.

Thirty-five weeks of postconceptional age was chosen
the measuring point for delineating health status because
term neonates are typically discharged home at this tim
eating well and displaying a steady weight gain. The hea
status categories were defined by the usual parameters
lized in clinical practice. The very healthy neonates we
tolerating full feeds, exhibiting steady weight gain, requir
no ventilatory support, were not receiving supplemental o
gen, were on no medications, and were awaiting discha
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The moderately healthy neonates, although receiving
feeds and exhibiting steady weight gain, still requir
supplemental oxygen, and were not ready for discharge.
moderately unhealthy neonates were receiving a combina
of hyperalimentation and enteral nutrition, medication~To-
bramycin, Vancomycin, and Theophylline! and supplementa
oxygen. The very unhealthy neonates still required the us
mechanical ventilation and oxygen to maintain homeosta
and also required medication~Amikacin, Albuterol, Amino-
phylline, Ceftazidime, Cisapride, Lasix, Fentanyl, Tobram
cin, and AmphotericinB! and hyperalimentation.
et
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The medical conditions of the neonates included resp
tory distress and sepsis early in life, and as each infant gr
the medical conditions either resolved or became chro
~bronchopulmonary dysphasia and continued ventilatory s
port!. Every infant was treated with theophylline during th
course of hospital stay. All infants with a gestational a
greater than 26 weeks, inappropriate growth for gestatio
age, received vasopressors, presence of congenital an
lies, intraventricular hemorrhage greater than grade II,
substance abuse exposed by maternal history were excl
from the study.
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